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Monte Carlo simulation has been performed in a two-dimensional modified XY-model first proposed by
Domany et al. �Phys. Rev. Lett. 52, 1535 �1984�� The cluster algorithm of Wolff has been used and multiple
histogram reweighting is performed. The first-order scaling behavior of the quantities such as specific heat and
free-energy barrier are found to be obeyed accurately. While the lowest-order correlation function was found to
decay to zero at long distance just above the transition, the next-higher-order correlation function shows a
nonzero plateau.
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More than two decades ago Domany et al. �1� proposed a
generalization of the two-dimensional XY model where the
shape of the usual cos � type potential could be modified
with the help of a single parameter. The two-dimensional
spins located at the sites of a square-lattice interact with the
nearest neighbors through a potential

V��ij� = 2�1 − �cos2�ij

2
�p2� , �1�

where �ij is the angle between the spins and p2 is a parameter
used to alter the shape of the potential. For p2=1 the poten-
tial reproduces the conventional XY model while for larger
values of p2 the potential well becomes narrower. The con-
ventional two-dimensional XY model does not possess any
true long-range order which is ruled out by the Mermin Wag-
ner theorem. However a continuous quasi-long-range order-
disorder transition resulting from the unbinding of topologi-
cal defects �2,3� is known to occur in this system and the
order-parameter correlation function is characterized by a
slow algebraic decay instead of the fast exponential decay
observed in a disordered system and this is referred to as the
Kosterlitz-Thouless �KT� transition in literature. Domany et
al. �1� performed Monte Carlo �MC� simulation and ob-
served that as the potential well gets narrower with the in-
crease in the parameter p2, the continuous transition gets
converted into a first-order phase transition and for p2=50
the transition is very sharp as is manifested by a huge peak in
the specific heat. This phenomenon is in apparent contradic-
tion with the prediction of the renormalization group �RG�
theory according to which systems in the same universal
class �having same symmetry of the order parameter and
same lattice dimensionality� should exhibit the same type of
phase transition with identical values of critical exponents.

The generalized XY model of Eq. �1� has been analyzed
by a number of authors �4,5� using the renormalization ap-
proach of the Migdal-Kadanoff type. These investigators
were of the opinion that the transition in the generalized XY
model appears to be first-order in nature because the MC
simulation of Domany et al. �1� and Himbergen �6� were

carried out on relatively small lattices and for large system
sizes the usual KT transition is expected to occur. Nearly a
decade later, Mila �7� using the same sort of renormalization
group analysis arrived at a similar conclusion. Lastly, using
the same line of approach, Garel et al. �8� put forward a
different type of interpretation of the above-mentioned RG
analysis and was of the view that the transition is indeed first
order.

Minnhagen �9–11� has carried out a detailed study of the
behavior of the phase transition exhibited by a two-
dimensional �2D� Coulomb gas, which very well describes
the characteristics of a 2D system consisting of vortex-
antivortex pairs. It was demonstrated that the KT behavior is
obtainable in a 2D Coulomb gas only at low particle densi-
ties. For higher particle densities the charge unbinding tran-
sition was shown to be first-order. Also a gas-liquid like criti-
cal point was found in the 2D Coulomb gas—the first-order
line in the temperature-particle density plane ends at a criti-
cal point. The KT transition line, obtainable at lower densi-
ties was seen to join smoothly with the first-order line at a
temperature slightly lower than the critical point. Jonsson et
al. �12� performed MC simulation in a 2D XY-model with a
modified potential, which essentially is equivalent to that of
Eq. �1� and established a critical point. They determined the
critical exponents for the system and interpreted the transi-
tion to be of the vortex unbinding type.

van Enter and Shlosman �13� presented a rigorous proof
that various SO�n�- invariant n-vector models which have a
deep and narrow potential well, would exhibit a first-order
transition. The model represented by Eq. �1� is a member of
this general class of systems. These authors based their proof
on the so called method of reflection positivity, a technique
borrowed from the field theory and used in statistical me-
chanics. van Enter and Shlosman argued that in spite of the
order parameter in 2D n-vector model being predicted to
vanish by the Mermin-Wagner theorem, long-range order
prevails in the system via higher-order correlation functions.
More recently, S. Ota and S. B. Ota �14� have performed MC
simulation of the modified XY model using microcanonical
ensemble and have identified a first-order phase transition in
the system.

The present article describes MC simulation of the 2D
modified XY model where computations have been per-
formed on systems of reasonably large size and finite size
scaling rules for first-order phase transition have been tested

*ssinha@research.jdvu.ac.in
†Corresponding author; skroy@phys.jdvu.ac.in

PHYSICAL REVIEW E 81, 022102 �2010�

1539-3755/2010/81�2�/022102�4� ©2010 The American Physical Society022102-1

http://dx.doi.org/10.1103/PhysRevE.81.022102


on the results of the simulation. The motivation is to resolve
the question on the nature of the phase transition in this
model and the contradictions among the views put forward
by different investigators for the last quarter of a century as
has been summed up above. Our observation is that the tran-
sition is indeed first-order for a large value of the parameter
p2 �we have used p2=50� as all finite size scaling rules are
nicely obeyed. We however have made no attempt to inves-
tigate the existence of the critical point in this model or to
determine the critical exponents as has been done by Jonsson
et al. �12� in relatively small systems. Among other observ-
ables we have computed the spin-spin angular correlation
functions of different orders. We observe that while the
lowest-order correlation function decays to zero, the next-
higher-order correlation function has a finite plateau which is
in accordance with statement of van Enter and Sholsman
�13�.

Another interesting aspect of our work is the application
of the Wolff cluster algorithm �15� to simulate the model. It
has been pointed out by a numbers of workers �1,16� that the
two-dimensional model is difficult to simulate using the con-
ventional single spin-flip Metropolis algorithm �17�. To in-
crease the reliability of the results we have used the multiple
histogram reweighting, due to Ferrenberg and Swendsen �18�
along with the Lee and Kosterlitz’s method �19� of finite size
scaling for a first-order phase transition. We observe that a
combination of these computational tools until now provides
a very efficient and accurate method of analyzing results ob-
tained in an unknown system.

Square lattices of linear dimension L ranging from 16 to
192 were simulated and for each lattice simulations were
performed at 9 to 13 temperatures in the neighborhood of the
transition to record the histograms for energy. The number of
configurations generated ranges from about 108 to 109. This
was estimated from the values of the autocorrelation time for
energy which we determined for all system sizes for each
temperature. Figure 1 shows the temperature variation in the
energy for a number of lattices, as is obtained by applying
histogram reweighting technique. From the energy histo-
grams, we have calculated the free energy like quantity A,

defined as A�E ;� ,L ,N�=−ln N�E ;� ,L�, where N�E ;� ,L� is
the histogram count of the energy distribution. The free-
energy barrier �F�L� was evaluated and in Fig. 2 we have
plotted �F against L where a good linear fit has been ob-
tained. This is a direct verification of the scaling rule �F
	Ld−1 of Lee and Kosterlitz �19� for a first-order phase tran-
sition since the lattice dimensionality d=2 in this model. We
further note that the scaling relation is well obeyed down to
L=16 which happens to be of the order of the correlation
length, � for the system, as one can estimate from the relation
�F���
1 �19�.

The specific heat Cv was obtained from the energy fluc-
tuation and Fig. 3 shows its temperature variation. It is evi-
dent that the peak height of Cv grows rapidly at the transi-
tion. From Fig. 4, where the maxima of Cv are plotted it is
clear that the standard scaling rules Cv	Ld for first-order
transition �20� are accurately obeyed in this model.

We have also tested the finite size scaling relation

Tc�L� − Tc��� 	 L−d, �2�

which is valid for a first-order phase transition �20�. Tc���
represents the thermodynamic limit of the transition tempera-
ture Tc. We have estimated the transition temperature in two

0.8

1.2

1.6

2

2.4

2.8

0.99 1 1.01 1.02 1.03 1.04

E

T

L=16
L=32
L=64
L=96

L=128
L=160
L=192

FIG. 1. The average energy per particle E plotted against dimen-
sionless temperature T for different lattice sizes. For clarity error
bars are shown only for L=16, 160, and 192.
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FIG. 2. The free-energy barrier height �F plotted against lattice
size L with the linear fit represented by straight line.
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FIG. 3. The specific-heat Cv plotted against temperature T for
different lattice sizes. For clarity only the above lattice sizes are
shown and the error bars have been indicated for two lattice size.
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ways—Tc
Cv is the estimate of Tc obtained from the peak po-

sition of the specific heat Cv and Tc
F represents the transition

temperature obtained from the fine tuning of the free energy
vs energy curve to obtain two equally deep minima. In Fig. 5
the transition temperatures thus obtained have been plotted
against L−2. It is seen that the linear fits are good within
statistical errors and the thermodynamic limit of the transi-
tion temperature is 1.008 97�6�10−5, within which the two
linear fits are seen to converge.

The first rank pair-correlation function is defined as

G1�r� = ��cos �ij��r, �3�

where i and j are two spins separated by a distance r. The
second rank pair correlation function is defined as

G2�r� = �P2�cos �ij��r. �4�

The pair-correlation functions G1�r� and G2�r� were calcu-
lated for temperatures T=1.0081, 1.0085, 1.0092, and 1.0095
for L=128 and are shown in Figs. 6 and 7. The first two of
these temperatures are less than the transition temperature for
this lattice while the other two temperatures are in the disor-
dered phase. The curves have been fitted to a power law
Gi�r�=air

−bi + f i for i=1 and 2. It may be noted that the pa-

rameter f is the asymptotic value of the pair-correlation func-
tion. We observe that while the first rank correlation function
G1�r� decays to zero at the two higher temperatures �f1=0�,
this is not the case for the higher rank correlation function
G2�r��f2	0.22�. In other words, while the lowest rank cor-
relation among the spins vanishes just above transition, the
next higher rank correlation continues to persist.

The simulations in the two-dimensional modified XY
model presented in this communication show that all the
first-order finite size scaling rules are obeyed. Computation
has been performed in system size up to 192�192 which
may be considered to be reasonably large for the purpose of
arriving at a conclusion regarding the behavior of the model.
We are inclined to conclude that the model exhibits a first-
order phase transition. This is in agreement with the views of
some of the earlier investigators including Domany et al. �1�
and van Enter and Shlosman �13�. The existence of a quasi-
long-range order-disorder transition observed in the 2D XY
model is known to be due to vortex-antivortex unbinding
�KT transition�. In absence of the role played by the vortices,
one would not observe any order-disorder transition in the
XY model in accordance with the Mermin-Wagner theorem.
In the class of models we have investigated the role played
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FIG. 4. The peak heights of Cv plotted against L2 with the linear
fit represented by the straight line. The error bars for most points are
smaller than the dimensions of the symbols used for plotting.
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FIG. 5. The transition temperature Tc obtained from �a� specific-
heat peak position and �b� fine tuning of free energy curve plotted
against L−2 along with the respective linear fits. The intercept on the
Y axis is 1.008 97�6�10−5.
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FIG. 6. The plots of the pair correlation function G1�r� against r
for the 128�128 lattice for the temperatures indicated. The curves
are plotted for r ranging up to L /2.
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FIG. 7. The plots of the pair correlation function G2�r� against r
for the 128�128 lattice for the temperatures indicated. The curves
are plotted for r ranging up to L /2.
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by the vortices changes qualitatively with change in p2

�which increases the nonlinearity of the potential well� as has
been seen in the early work of Himbergen �6�. Also we have
seen that the number of vortex pairs grows rapidly with the
increase in p2 �21�. Qualitatively, one may therefore think
that the modified XY model for large values of p2, behaves
like a dense defect system and gives rise to a first-order
phase transition as has been predicted by Minnahagen
�9–11�.

We mention another point before ending this section. This
is the performance of Wolff cluster algorithm which turned
out to be very convenient to simulate the model. Conven-
tional algorithms, as we have seen, do not work well in this
model. Our earlier attempt �16� using the recently developed
Wang-Landau �WL� algorithm �22� which directly deter-

mines the density of states of a system is also not a good
choice for simulating this model. The main problem while
using the WL algorithm is that configurations near the mini-
mum energy take a very long time to be sampled during the
random walk and it becomes impractical to simulate continu-
ous models of even moderate size because of the huge CPU
time that becomes necessary. Among other things, a great
virtue of the Wolff algorithm is that it does not contain any
adjustable parameter even while simulating a continuous
model.
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